SHRINKAGE ESTIMATION OF REGRESSION MODELS WITH MULTIPLE STRUCTURAL CHANGES
نویسندگان
چکیده
منابع مشابه
Shrinkage Estimation of Regression Models with Multiple Structural Changes
In this paper we consider the problem of determining the number of structural changes in multiple linear regression models via group fused Lasso (least absolute shrinkage and selection operator). We show that with probability tending to one our method can correctly determine the unknown number of breaks and the estimated break dates are sufficiently close to the true break dates. We obtain esti...
متن کاملPositive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملShrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
متن کاملShrinkage Estimation and Selection for Multiple Functional Regression
Functional linear regression is a useful extension of simple linear regression and has been investigated by many researchers. However, the functional variable selection problem when multiple functional observations exist, which is the counterpart in the functional context of multiple linear regression, is seldom studied. Here we propose a method using a group smoothly clipped absolute deviation...
متن کاملInterquantile Shrinkage in Regression Models.
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Theory
سال: 2015
ISSN: 0266-4666,1469-4360
DOI: 10.1017/s0266466615000237